YES 0.849 H-Termination proof of /home/matraf/haskell/eval_FullyBlown_Fast/empty.hs
H-Termination of the given Haskell-Program with start terms could successfully be proven:



HASKELL
  ↳ LR

mainModule Main
  ((sequence :: Monad b => [b a ->  b [a]) :: Monad b => [b a ->  b [a])

module Main where
  import qualified Prelude



Lambda Reductions:
The following Lambda expression
\xsreturn (x : xs)

is transformed to
sequence0 x xs = return (x : xs)

The following Lambda expression
\xsequence cs >>= sequence0 x

is transformed to
sequence1 cs x = sequence cs >>= sequence0 x



↳ HASKELL
  ↳ LR
HASKELL
      ↳ BR

mainModule Main
  ((sequence :: Monad a => [a b ->  a [b]) :: Monad a => [a b ->  a [b])

module Main where
  import qualified Prelude



Replaced joker patterns by fresh variables and removed binding patterns.

↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
HASKELL
          ↳ COR

mainModule Main
  ((sequence :: Monad b => [b a ->  b [a]) :: Monad b => [b a ->  b [a])

module Main where
  import qualified Prelude



Cond Reductions:
The following Function with conditions
undefined 
 | False
 = undefined

is transformed to
undefined  = undefined1

undefined0 True = undefined

undefined1  = undefined0 False



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
HASKELL
              ↳ Narrow

mainModule Main
  (sequence :: Monad a => [a b ->  a [b])

module Main where
  import qualified Prelude



Haskell To QDPs


↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
QDP
                    ↳ QDPSizeChangeProof
                  ↳ QDP
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_psPs(:(vx90, vx91), vx4, ba) → new_psPs(vx91, vx4, ba)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
QDP
                    ↳ QDPSizeChangeProof
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_gtGtEs(:(vx610, vx611), vx300, ba) → new_gtGtEs(vx611, vx300, ba)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
QDP
                    ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

new_gtGtEs0(:(vx300, vx301), vx31, ba) → new_psPs0(vx31, vx300, new_gtGtEs1(vx301, vx31, ba), ba)
new_sequence1(vx31, vx7, ba) → new_sequence(vx31, ty_IO, ba)
new_psPs0(vx31, vx300, vx4, ba) → new_sequence(vx31, ty_[], ba)
new_sequence(:(:(vx300, vx301), vx31), ty_[], ba) → new_gtGtEs0(vx301, vx31, ba)
new_gtGtEs0(:(vx300, vx301), vx31, ba) → new_gtGtEs0(vx301, vx31, ba)
new_sequence(:(:(vx300, vx301), vx31), ty_[], ba) → new_psPs0(vx31, vx300, new_gtGtEs1(vx301, vx31, ba), ba)
new_sequence(:(vx30, vx31), ty_IO, ba) → new_sequence(vx31, ty_IO, ba)
new_sequence(:(Just(vx300), vx31), ty_Maybe, ba) → new_sequence(vx31, ty_Maybe, ba)

The TRS R consists of the following rules:

new_psPs4([], vx4, ba) → vx4
new_gtGtEs1([], vx31, ba) → []
new_psPs2(vx31, vx300, vx4, ba) → new_psPs3(new_sequence0(vx31, ty_[], ba), vx300, vx4, ba)
new_psPs3([], vx300, vx4, ba) → new_psPs1(vx4, ba)
new_psPs1(vx4, ba) → vx4
new_psPs5(vx300, vx60, vx9, vx4, ba) → :(:(vx300, vx60), new_psPs4(vx9, vx4, ba))
new_gtGtEs2([], vx300, ba) → []
new_gtGtEs2(:(vx610, vx611), vx300, ba) → new_psPs4(:(:(vx300, vx610), []), new_gtGtEs2(vx611, vx300, ba), ba)
new_psPs4(:(vx90, vx91), vx4, ba) → :(vx90, new_psPs4(vx91, vx4, ba))
new_psPs3(:(vx60, vx61), vx300, vx4, ba) → new_psPs5(vx300, vx60, new_psPs1(new_gtGtEs2(vx61, vx300, ba), ba), vx4, ba)
new_gtGtEs1(:(vx300, vx301), vx31, ba) → new_psPs2(vx31, vx300, new_gtGtEs1(vx301, vx31, ba), ba)

The set Q consists of the following terms:

new_gtGtEs1(:(x0, x1), x2, x3)
new_gtGtEs2(:(x0, x1), x2, x3)
new_psPs5(x0, x1, x2, x3, x4)
new_psPs2(x0, x1, x2, x3)
new_gtGtEs2([], x0, x1)
new_psPs3(:(x0, x1), x2, x3, x4)
new_psPs4(:(x0, x1), x2, x3)
new_psPs3([], x0, x1, x2)
new_gtGtEs1([], x0, x1)
new_psPs1(x0, x1)
new_psPs4([], x0, x1)

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 3 SCCs with 1 less node.

↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
QDP
                          ↳ UsableRulesProof
                        ↳ QDP
                        ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_sequence(:(Just(vx300), vx31), ty_Maybe, ba) → new_sequence(vx31, ty_Maybe, ba)

The TRS R consists of the following rules:

new_psPs4([], vx4, ba) → vx4
new_gtGtEs1([], vx31, ba) → []
new_psPs2(vx31, vx300, vx4, ba) → new_psPs3(new_sequence0(vx31, ty_[], ba), vx300, vx4, ba)
new_psPs3([], vx300, vx4, ba) → new_psPs1(vx4, ba)
new_psPs1(vx4, ba) → vx4
new_psPs5(vx300, vx60, vx9, vx4, ba) → :(:(vx300, vx60), new_psPs4(vx9, vx4, ba))
new_gtGtEs2([], vx300, ba) → []
new_gtGtEs2(:(vx610, vx611), vx300, ba) → new_psPs4(:(:(vx300, vx610), []), new_gtGtEs2(vx611, vx300, ba), ba)
new_psPs4(:(vx90, vx91), vx4, ba) → :(vx90, new_psPs4(vx91, vx4, ba))
new_psPs3(:(vx60, vx61), vx300, vx4, ba) → new_psPs5(vx300, vx60, new_psPs1(new_gtGtEs2(vx61, vx300, ba), ba), vx4, ba)
new_gtGtEs1(:(vx300, vx301), vx31, ba) → new_psPs2(vx31, vx300, new_gtGtEs1(vx301, vx31, ba), ba)

The set Q consists of the following terms:

new_gtGtEs1(:(x0, x1), x2, x3)
new_gtGtEs2(:(x0, x1), x2, x3)
new_psPs5(x0, x1, x2, x3, x4)
new_psPs2(x0, x1, x2, x3)
new_gtGtEs2([], x0, x1)
new_psPs3(:(x0, x1), x2, x3, x4)
new_psPs4(:(x0, x1), x2, x3)
new_psPs3([], x0, x1, x2)
new_gtGtEs1([], x0, x1)
new_psPs1(x0, x1)
new_psPs4([], x0, x1)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
                        ↳ QDP
                          ↳ UsableRulesProof
QDP
                              ↳ QReductionProof
                        ↳ QDP
                        ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_sequence(:(Just(vx300), vx31), ty_Maybe, ba) → new_sequence(vx31, ty_Maybe, ba)

R is empty.
The set Q consists of the following terms:

new_gtGtEs1(:(x0, x1), x2, x3)
new_gtGtEs2(:(x0, x1), x2, x3)
new_psPs5(x0, x1, x2, x3, x4)
new_psPs2(x0, x1, x2, x3)
new_gtGtEs2([], x0, x1)
new_psPs3(:(x0, x1), x2, x3, x4)
new_psPs4(:(x0, x1), x2, x3)
new_psPs3([], x0, x1, x2)
new_gtGtEs1([], x0, x1)
new_psPs1(x0, x1)
new_psPs4([], x0, x1)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

new_gtGtEs1(:(x0, x1), x2, x3)
new_gtGtEs2(:(x0, x1), x2, x3)
new_psPs5(x0, x1, x2, x3, x4)
new_psPs2(x0, x1, x2, x3)
new_gtGtEs2([], x0, x1)
new_psPs3(:(x0, x1), x2, x3, x4)
new_psPs4(:(x0, x1), x2, x3)
new_psPs3([], x0, x1, x2)
new_gtGtEs1([], x0, x1)
new_psPs1(x0, x1)
new_psPs4([], x0, x1)



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
                        ↳ QDP
                          ↳ UsableRulesProof
                            ↳ QDP
                              ↳ QReductionProof
QDP
                                  ↳ QDPSizeChangeProof
                        ↳ QDP
                        ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_sequence(:(Just(vx300), vx31), ty_Maybe, ba) → new_sequence(vx31, ty_Maybe, ba)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
                        ↳ QDP
QDP
                          ↳ UsableRulesProof
                        ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_sequence(:(vx30, vx31), ty_IO, ba) → new_sequence(vx31, ty_IO, ba)

The TRS R consists of the following rules:

new_psPs4([], vx4, ba) → vx4
new_gtGtEs1([], vx31, ba) → []
new_psPs2(vx31, vx300, vx4, ba) → new_psPs3(new_sequence0(vx31, ty_[], ba), vx300, vx4, ba)
new_psPs3([], vx300, vx4, ba) → new_psPs1(vx4, ba)
new_psPs1(vx4, ba) → vx4
new_psPs5(vx300, vx60, vx9, vx4, ba) → :(:(vx300, vx60), new_psPs4(vx9, vx4, ba))
new_gtGtEs2([], vx300, ba) → []
new_gtGtEs2(:(vx610, vx611), vx300, ba) → new_psPs4(:(:(vx300, vx610), []), new_gtGtEs2(vx611, vx300, ba), ba)
new_psPs4(:(vx90, vx91), vx4, ba) → :(vx90, new_psPs4(vx91, vx4, ba))
new_psPs3(:(vx60, vx61), vx300, vx4, ba) → new_psPs5(vx300, vx60, new_psPs1(new_gtGtEs2(vx61, vx300, ba), ba), vx4, ba)
new_gtGtEs1(:(vx300, vx301), vx31, ba) → new_psPs2(vx31, vx300, new_gtGtEs1(vx301, vx31, ba), ba)

The set Q consists of the following terms:

new_gtGtEs1(:(x0, x1), x2, x3)
new_gtGtEs2(:(x0, x1), x2, x3)
new_psPs5(x0, x1, x2, x3, x4)
new_psPs2(x0, x1, x2, x3)
new_gtGtEs2([], x0, x1)
new_psPs3(:(x0, x1), x2, x3, x4)
new_psPs4(:(x0, x1), x2, x3)
new_psPs3([], x0, x1, x2)
new_gtGtEs1([], x0, x1)
new_psPs1(x0, x1)
new_psPs4([], x0, x1)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
                        ↳ QDP
                        ↳ QDP
                          ↳ UsableRulesProof
QDP
                              ↳ QReductionProof
                        ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_sequence(:(vx30, vx31), ty_IO, ba) → new_sequence(vx31, ty_IO, ba)

R is empty.
The set Q consists of the following terms:

new_gtGtEs1(:(x0, x1), x2, x3)
new_gtGtEs2(:(x0, x1), x2, x3)
new_psPs5(x0, x1, x2, x3, x4)
new_psPs2(x0, x1, x2, x3)
new_gtGtEs2([], x0, x1)
new_psPs3(:(x0, x1), x2, x3, x4)
new_psPs4(:(x0, x1), x2, x3)
new_psPs3([], x0, x1, x2)
new_gtGtEs1([], x0, x1)
new_psPs1(x0, x1)
new_psPs4([], x0, x1)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

new_gtGtEs1(:(x0, x1), x2, x3)
new_gtGtEs2(:(x0, x1), x2, x3)
new_psPs5(x0, x1, x2, x3, x4)
new_psPs2(x0, x1, x2, x3)
new_gtGtEs2([], x0, x1)
new_psPs3(:(x0, x1), x2, x3, x4)
new_psPs4(:(x0, x1), x2, x3)
new_psPs3([], x0, x1, x2)
new_gtGtEs1([], x0, x1)
new_psPs1(x0, x1)
new_psPs4([], x0, x1)



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
                        ↳ QDP
                        ↳ QDP
                          ↳ UsableRulesProof
                            ↳ QDP
                              ↳ QReductionProof
QDP
                                  ↳ QDPSizeChangeProof
                        ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_sequence(:(vx30, vx31), ty_IO, ba) → new_sequence(vx31, ty_IO, ba)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
                        ↳ QDP
                        ↳ QDP
QDP
                          ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

new_gtGtEs0(:(vx300, vx301), vx31, ba) → new_psPs0(vx31, vx300, new_gtGtEs1(vx301, vx31, ba), ba)
new_psPs0(vx31, vx300, vx4, ba) → new_sequence(vx31, ty_[], ba)
new_sequence(:(:(vx300, vx301), vx31), ty_[], ba) → new_gtGtEs0(vx301, vx31, ba)
new_gtGtEs0(:(vx300, vx301), vx31, ba) → new_gtGtEs0(vx301, vx31, ba)
new_sequence(:(:(vx300, vx301), vx31), ty_[], ba) → new_psPs0(vx31, vx300, new_gtGtEs1(vx301, vx31, ba), ba)

The TRS R consists of the following rules:

new_psPs4([], vx4, ba) → vx4
new_gtGtEs1([], vx31, ba) → []
new_psPs2(vx31, vx300, vx4, ba) → new_psPs3(new_sequence0(vx31, ty_[], ba), vx300, vx4, ba)
new_psPs3([], vx300, vx4, ba) → new_psPs1(vx4, ba)
new_psPs1(vx4, ba) → vx4
new_psPs5(vx300, vx60, vx9, vx4, ba) → :(:(vx300, vx60), new_psPs4(vx9, vx4, ba))
new_gtGtEs2([], vx300, ba) → []
new_gtGtEs2(:(vx610, vx611), vx300, ba) → new_psPs4(:(:(vx300, vx610), []), new_gtGtEs2(vx611, vx300, ba), ba)
new_psPs4(:(vx90, vx91), vx4, ba) → :(vx90, new_psPs4(vx91, vx4, ba))
new_psPs3(:(vx60, vx61), vx300, vx4, ba) → new_psPs5(vx300, vx60, new_psPs1(new_gtGtEs2(vx61, vx300, ba), ba), vx4, ba)
new_gtGtEs1(:(vx300, vx301), vx31, ba) → new_psPs2(vx31, vx300, new_gtGtEs1(vx301, vx31, ba), ba)

The set Q consists of the following terms:

new_gtGtEs1(:(x0, x1), x2, x3)
new_gtGtEs2(:(x0, x1), x2, x3)
new_psPs5(x0, x1, x2, x3, x4)
new_psPs2(x0, x1, x2, x3)
new_gtGtEs2([], x0, x1)
new_psPs3(:(x0, x1), x2, x3, x4)
new_psPs4(:(x0, x1), x2, x3)
new_psPs3([], x0, x1, x2)
new_gtGtEs1([], x0, x1)
new_psPs1(x0, x1)
new_psPs4([], x0, x1)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
                        ↳ QDP
                        ↳ QDP
                        ↳ QDP
                          ↳ UsableRulesProof
QDP
                              ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

new_gtGtEs0(:(vx300, vx301), vx31, ba) → new_psPs0(vx31, vx300, new_gtGtEs1(vx301, vx31, ba), ba)
new_psPs0(vx31, vx300, vx4, ba) → new_sequence(vx31, ty_[], ba)
new_sequence(:(:(vx300, vx301), vx31), ty_[], ba) → new_gtGtEs0(vx301, vx31, ba)
new_gtGtEs0(:(vx300, vx301), vx31, ba) → new_gtGtEs0(vx301, vx31, ba)
new_sequence(:(:(vx300, vx301), vx31), ty_[], ba) → new_psPs0(vx31, vx300, new_gtGtEs1(vx301, vx31, ba), ba)

The TRS R consists of the following rules:

new_gtGtEs1([], vx31, ba) → []
new_gtGtEs1(:(vx300, vx301), vx31, ba) → new_psPs2(vx31, vx300, new_gtGtEs1(vx301, vx31, ba), ba)
new_psPs2(vx31, vx300, vx4, ba) → new_psPs3(new_sequence0(vx31, ty_[], ba), vx300, vx4, ba)

The set Q consists of the following terms:

new_gtGtEs1(:(x0, x1), x2, x3)
new_gtGtEs2(:(x0, x1), x2, x3)
new_psPs5(x0, x1, x2, x3, x4)
new_psPs2(x0, x1, x2, x3)
new_gtGtEs2([], x0, x1)
new_psPs3(:(x0, x1), x2, x3, x4)
new_psPs4(:(x0, x1), x2, x3)
new_psPs3([], x0, x1, x2)
new_gtGtEs1([], x0, x1)
new_psPs1(x0, x1)
new_psPs4([], x0, x1)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

new_gtGtEs2(:(x0, x1), x2, x3)
new_psPs5(x0, x1, x2, x3, x4)
new_gtGtEs2([], x0, x1)
new_psPs4(:(x0, x1), x2, x3)
new_psPs1(x0, x1)
new_psPs4([], x0, x1)



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
                        ↳ QDP
                        ↳ QDP
                        ↳ QDP
                          ↳ UsableRulesProof
                            ↳ QDP
                              ↳ QReductionProof
QDP
                                  ↳ QDPSizeChangeProof

Q DP problem:
The TRS P consists of the following rules:

new_gtGtEs0(:(vx300, vx301), vx31, ba) → new_psPs0(vx31, vx300, new_gtGtEs1(vx301, vx31, ba), ba)
new_psPs0(vx31, vx300, vx4, ba) → new_sequence(vx31, ty_[], ba)
new_sequence(:(:(vx300, vx301), vx31), ty_[], ba) → new_gtGtEs0(vx301, vx31, ba)
new_gtGtEs0(:(vx300, vx301), vx31, ba) → new_gtGtEs0(vx301, vx31, ba)
new_sequence(:(:(vx300, vx301), vx31), ty_[], ba) → new_psPs0(vx31, vx300, new_gtGtEs1(vx301, vx31, ba), ba)

The TRS R consists of the following rules:

new_gtGtEs1([], vx31, ba) → []
new_gtGtEs1(:(vx300, vx301), vx31, ba) → new_psPs2(vx31, vx300, new_gtGtEs1(vx301, vx31, ba), ba)
new_psPs2(vx31, vx300, vx4, ba) → new_psPs3(new_sequence0(vx31, ty_[], ba), vx300, vx4, ba)

The set Q consists of the following terms:

new_gtGtEs1(:(x0, x1), x2, x3)
new_psPs2(x0, x1, x2, x3)
new_psPs3(:(x0, x1), x2, x3, x4)
new_psPs3([], x0, x1, x2)
new_gtGtEs1([], x0, x1)

We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs: